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Abstract. Our goal is to study the statistical properies of ‘dielectric resonances’ which are poles
of conductance of a large randomLC network. Such poles are a particular example of eigenvalues
λn of matrix pencilsH − λW , with W being a positive definite matrix andH a random real
symmetric one. We first consider spectra of the matrix pencils with independent, identically
distributed entries ofH. Then we concentrate on an infinite-range (‘full-connectivity’) version of
a randomLC network. In all cases we calculate the mean eigenvalue density and the two-point
correlation function in the framework of Efetov’s supersymmetry approach. Fluctuations in spectra
turn out to be the same as those provided by the Wigner–Dyson theory of usual random matrices.

1. Introduction

Large random reactance networks (that is networks made of random mixture of capacitancesC

and inductancesL) possess a peculiar property first noticed by Dykhne [1]: they have a finite
real conductance and thus can disperse an electric power. The explanation of this somewhat
paradoxical property is simple, however. Indeed, if such a network is large enough there always
exist circuits of ‘resonance type’, with (purely imaginary) conductance showing poles at some
frequencies. Then the real part of the conductance as a function of frequency consists of a
set ofδ-like peaks at those resonance frequencies. When the volume of the network grows to
infinity, this set becomes increasingly dense. Then, adding an arbitrarily small (infinitesemal,
but fixed) active part to all inductances (one may think, e.g. of the inductanceL on each bond
being in series with a weak resistanceR) results in a finite active resistance of the network.

A random mixture of two active conductances is very well studied in correspondence with
the bond percolation problem, see e.g. [2]. At the same time, the random reactance networks
are relatively less studied.

It is necessary to mention that the randomLC (more generally,RL–C) networks emerge
in various physical contexts. As was shown long ago by Shender [3], the conductance of the
randomLC network turns out to be intimately related to properties of collective excitations in
spin glasses. The mapping between the two problems is possible by an analogy first noticed by
Kirkpatrick [4] between the Kirchhoff law and the equation of motion for the spin operators.

More recently,RL–C networks were claimed to be an adequate model for describing the
optical absorption in disordered metal films, see [5] and references therein, which showed some
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unusual features. This fact motivated Luck and collaborators to perform a series of insightful
numerical investigations of the two-dimensionalRL–C arrays [6,7].

Since it is the conductance poles (resonances) of theLC networks which dominate the
properties of the weakly dissipativeRL–C networks, it is natural to try to understand their
properties in greater detail. To access those poles it is convenient, following [7,8], to start with
the Kirchhoff equations for the electric potential at verticesi of a network:∑

j

σij (Vi − Vj ) = 0 (1)

where the summation goes over all verticesj which are neighbours of a giveni. The Kirchhoff
equations (1) should be complimented with boundary conditions at the electrodes. For a two-
terminal geometry one assumesVi = 0 (resp.Vi = V ) for the verticesi belonging to the left
(resp. right) terminal.

It is useful to introduce the (positive semidefinite) Laplace operatorD on the network by

(DV )i =
∑
j

(Vj − Vi) (2)

with the convention thatVi = 0 on both electrodes.
In a randomLC network each conductance at frequencyf = ω/2π is equal to either

σ0 = iCω or σ1 = (iLω)−1, with specified probabilities (in what follows we concentrate on
the case of equal probability for findingL andC bonds in the network). Then, the Laplace
operator can be written as a sumDC + DL of its components on theL- andC-bond sets,
respectively. It is easy to show that the poles of the conductance occur at frequenciesf given
by the roots of the equation [7,8]:

det(DL − λD) = 0 (3)

where we introduce the ratio

λ = σ0

σ0 − σ1
= (ω/ω0)

2

1 + (ω/ω0)2
06 λ 6 1 (4)

with ω0 = 1/(LC)1/2 being a characteristic resonant frequency of theLC network.
The simplest, but very informative way to understand properties of the random binary

mixtures,on average, is to write an equation for the mean conductance6 using an effective-
medium approximation (EMA). For a network with a coordination numberz and equal
concentrations ofσ0- andσ1-bonds it reads as follows [4]:

6 − σ0

2σ0 + (z− 2)6
+

6 − σ1

2σ1 + (z− 2)6
= 0. (5)

Analysing the solution of this quadratic equation as a function ofλ in the interval 06 λ 6 1,
one finds that generically forz > 4 the real part of6(λ) is only non-zero inside some interval
λmin(z) 6 λ 6 λmax(z). According to the discussion above it means that the mean density of
resonances is only finite inside that interval.

As useful and simple as it is, the EMA suffers from an essential drawback: it systematically
neglects fluctuations, whereas taking the fluctuations into account could be important. For
example, as was noted in [3,7], the existence of sharp edgesλmin,max was an artifact of the EMA
approximation. In fact, the density of the resonances is never exactly zero inside the whole
intervalλ ∈ [0, 1] due to the so-called Lifshitz tails, which is purely a fluctuation phenomenon.
Apart from that, it seems hard to construct the EMA as a systematic approximation with respect
to some small parameter, though there are indications that it becomes progressively exact for
higher spatial dimensionsd [9] and can be an extremely well-working one for many realistic
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Figure 1. A schematic view of the full-connectivity graph with three
internal nodes. One direct bond connecting the terminal nodesA andB
is excluded.

systems [4]. Therefore, it is not clear how to correct it systematically or how to take fluctuation
effects into account.

These unsatisfactory features should be contrasted with the status of the mean-field
approximation in the theory of magnetism, with which EMA shares its main ingredients.
As is well known, the mean-field equations become exact for the model with the infinite range
of spin interaction. Even for strongly disordered spin systems such as spin glasses the latter
model provides an adequate basis for constructing a mean-field theory with many non-trivial
properties [10].

It is also natural to try to consider a similar type of model for the disordered reactance
networks. This just amounts to considering the Kirchhoff equations (1) on a disorderedfull-
connectivitygraph ofN vertices (nodes) connected byN(N − 1)/2 edges (bonds), each
independently taking a valueσ0 or σ1.

Actually, we find it convenient to consider a graph withN + 2 nodes, among them two
‘terminal’ nodes (labelledA andB, respectively) are singled out by being attached to the
external voltage, so that the potential atA is equal toV , whereas the potential atB is kept zero.
The rest of theN ‘internal’ nodes are labelled by indicesi = 1, . . . , N and the corresponding
(induced) potentials are denoted withVi . The nodes are connected in a full-connectivity graph
of (N + 2)(N + 1)/2− 1 bonds, with a single bond being excluded for obvious reasons: that
connecting terminalsA andB directly, see figure 1.

We then attribute conductancesσµν = σνµ, µ, ν = A,B,1, . . . , N to each bond.
It is convenient to introduce threeN -component vectors:v = (V1, . . . , VN)

T , σA =
(σA1, . . . , σAN)

T , σB = (σB1, . . . , σBN)
T (here we usedT to indicate the transposition) and

N ×N matrixΣ with the following structure:

Σ =


σA1 + σB1 +

∑N
k 6=1 σ1k −σ12 . . . −σ1N

−σ21 σA2 + σB2 +
∑N

k 6=2 σ2k . . . −σ2N

. . . . . . . . . . . .

−σN1 −σN2 . . . σAN + σBN +
∑

k 6=N σNk

 .
In these notationsN + 1 Kirchhoff equations (1) (N for the internal nodesi, and one for the
nodeB) can be written, respectively, as

Σv = V σA σTBv = I (6)

whereI stands for the total current flowing outwards through the terminal nodeB. This system
of equations can be readily solved yielding the expression for the network conductance:

YAB = I

V
= σTBΣ−1σA. (7)

If we now deal with a binary networks when eachσij is σ0 with a probabilityp andσ1

with the probability 1−p it is convenient to introduce the ‘symmetric’ variableshij such that
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hij = −1 if σij = σ0 andhij = 1 if σij = σ1, so thatσij = 1
2([σ0 + σ1] + [σ1 − σ0]hij ). In

terms of these variables the network conductance equation (7) can be written as

yab = YAB/σ0 = − 1

2λ
[hTB − λ̃eT ]

1

H − λ̃W [hA − λ̃e] (8)

whereλ̃ = 2λ − 1, eT = (1, 1, . . . ,1), hTB = (hB1, . . . , hBN) andN × N matricesW ,H
have the following elements:

Wij = (N + 2)δij − 1 Hij = δij
(
hAi + hiB +

∑
k 6=i

hik

)
− (1− δij )hij . (9)

With these expressions in hand we see that resonances of our network are determined by values
of λ̃ satisfying the condition

det(H − λ̃W ) = 0. (10)

Of course, it is evident that the full-connectivity construction would be a completely
inadequate one for describing the percolation problem which dominates the properties of binary
mixtures of two real conductances. We are, however, interested in studying the resonances
of disorderedLC networks, and the existence of such resonances is in no way precluded by
‘all-to-all’ geometry. We find that such a model turns out to be, in essence, exactly soluble in
the limitN � 1. We start by deriving the mean density of the resonances which turns out to be
a function of the scaled variabler = λ̃N1/2. One can already envisage such a scaling from the
EMA result, equation (5), which forz � 1 gives|λmin,max − 1

2| ∝ λ̃min,max ∼ z−1/2. At the
same time, in contrast to EMA, the support of the spectrum in the infinite-range model does
not have artificial sharp edgesλ̃min,max , but rather the mean spectral densityρ(r) smoothly
decays to zero as long asr →∞ asρ(r) ∝ e−r

2/2.
Of more interest is the fact that the infinite-range model opens the possibility to study

fluctuations of various quantities. In the present paper we concentrate on spectral fluctuations
and, correspondingly, study the two-point correlation function of the resonance densities. The
latter turns out to be essentially the same as given by the famous Wigner–Dyson theory of
random matrix spectra. This fact favourably agrees with overall numerical results [7] for the
resonance spectra of two-dimensional disorderedLC networks. The origin of relatively small,
but noticable deviations from the Wigner-Dyson statistics detected in [7] remains unclear for
us at the moment and could be related to two-dimensional features of the networks studied
there which are not captured adequately by our infinite-ranged model. This issue deserves
further investigation.

Actually, finding the set ofλ satisfing equation (3) or (10) is an example of the generalized
eigenvalue problem. The combination of matricesDL − λD or H − λ̃W , in this respect,
is known in the mathematical literature as apencil of matrices[11] or just the matrix pencil.
The theory of the matrix pencils has many important applications such as, e.g., vibration and
bifurcation analysis in complicated structures [12] and game theory [13].

At the same time, it seems that the present knowledge on the statistical properties of
generalized eigenvalues of the pencils of random matrices is rather scarce. In [14] the authors
consider the mean number and the density of real eigenvalues for a pencilH−λW , with bothH
andW being matrices with all independent real entries and no symmetry conditions imposed.
At the same time, our original physical problem has motivated our interest in the pencils formed
by realsymmetricmatricesH,W , with W being positive definite. It is clear thatW > 0
ensures all the eigenvalues of the matrix pencils to be real (in the literature such pencils are
sometimes called theregular ones [11]). Indeed, in that case the generalized eigenproblem:
Hx = λW x is equivalent to a usual one:W−1/2HW−1/2y = λy, y = W 1/2x, with

H̃ =W−1/2HW−1/2 being a real symmetric matrix.
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The mean eigenvalue density for matrices of similar types (when bothW andH are
random) was studied in some generality starting from the work by Marchenko and Pastur,
see [15]. In fact, the mean eigenvalue density can be found for the ensembleH̃, with H
being a real symmetric matrix with independent, identically distributed (IID) entries using a
generalized version of the results of Pastur [16]. We are, however, not aware of any systematic
study of spectral correlations of regular pencils of the random matrices.

This is in contrast to the very intensive research on eigenvalues of the random matrices
(which is a particular case ofW ≡ 1) performed in recent years in the domain of theoretical
and mathematical physics [17]. Below, we summarize the most important facts found from
these studies.

As is well established [18–20, 22, 23], the statistical properties of real eigenvaluesXi of
largeN × N self-adjoint random matricesH are to a large extentuniversal, i.e. independent
of the details of the distributionsP(H) of their entries.

It is important to mention the existence, in general, of two different characteristic scales
in the random matrix spectra: theglobal one and thelocal one. The global scale is that on
which the eigenvalue density, defined asρ(X) = 1

N
Tr δ(X −H), changes appreciably with

its argumentX when averaged overP(H). For matrices whose spectrum has a finite support
in the intervalX ∈ [A,B] the global scale is just the length of this interval.

In contrast, the local scale is that determined by the typical separation1 = 〈Xi −Xi−1〉
between neighbouring eigenvalues situated around a pointX, with the brackets standing for
the statistical averaging. It is therefore given by1 = (〈Nρ(X)〉)−1. If we are interested in
those values ofX that are sufficiently far from the edges of the spectra the global scale is,
roughly speaking, a factor ofN larger than the local one. In other words, the mean density
〈ρ(X)〉 can be considered as a constant one on the scale1.

The degree of universality is essentially dependent on the chosen scale.
As to the global scale universality, first of all one can mention that for the matrices with

IID entries under quite general conditions (see, e.g., [24] and references therein) the mean
density is given in the limitN →∞ by the so-called ‘Wigner semicircle law’:

〈ρ(X)〉 = 1

2πa2

√
4a2 −X2 = 1

N1
. (11)

In this expression the parametera just sets the global scale in the sense defined above. It is
determined by the expectation valuea2 = 〈 1

N
TrH2〉. It is generally accepted to scale the

entriesHij ∼ 1/N1/2, i.e. in such a way thata stays finite whenN → ∞, the local spacing
between eigenvalues in the neighbourhood of the pointX therefore being1 ∝ 1/N .

From the point of view of universality the semicircular eigenvalue density is not extremely
robust. One can most easily violate it by considering an important class of the so-
called ‘invariant ensembles’ characterized by a probability density of the formP(H) ∝
exp−N Tr V (H), with V (H) being an even polynomial. The corresponding eigenvalue
density turns out to be highly nonuniversal and is determined by the particular form of the
potentialV (H). Only for V (H) = H2 is it given by the semicircular law, equation (11).
Actually, any ‘deformation’H1 = H0 +H of the ensembleH with IID entries by a given
fixed matrixH0 results in the mean eigenvalue density belonging to a family of ‘deformed
semicircular laws’ as discovered by Pastur [16].

Moreover, one can easily have a non-semicircular eigenvalue density even for real
symmetric matricesS; Sij = Sji with IID entries, if one keeps the mean number of non-
zero entries,p, per column to be of the order of unity when performing the limitN → ∞.
This is a characteristic feature of the so-calledsparserandom matrices [22,25,26] characterized
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by the following probability density of a given entrySij :

P(Sij ) =
(
1− p

N
)δ(Sij

)
+
p

N
h(Sij ) (12)

whereh(s) = h(−s) is an arbitrary even distribution function satisfying the conditions:
h(0) <∞;

∫
h(s)s2 ds <∞.

Remarkably, a much more profound universality emerges for the two-point correlation
spectral function defined as

〈ρ(X1)ρ(X2)〉c = 〈ρ(X1)〉δ(X1−X2)− Y2(X1, X2) (13)

where we defined the connected part of the correlation function in a usual manner:〈AB〉c =
〈AB〉 − 〈A〉〈B〉. The nontrivial part of the spectral correlator is called thecluster function
Y2(X1, X2). It is one of the most informative statistical measures of the spectra [28]. It turns
out that the global scale behaviour ofY2(X1, X2) (i.e. one for the distanceS being comparable
with the support of the spectrum in the limitN → ∞) is already rather universal. It is the
same for all the ‘invariant ensembles’ [19] and for those with IID matrix elements [23] and is
determined only by the positions of the edge points [A,B] of the spectrum†.

Even more interesting is the fact that universality of the correlation function equation (13)
(as well as of all higher correlation functions) extends to the local scale, i.e. for the distances
|X1 − X2| comparable with1. This fact was rigorously proved for the unitary invariant
ensembles [18], extended to the unitary ‘deformed’ ensembles [21] and heuristically verified
for other invariant ensembles [20] as well as for the ensembles of sparse matrices [22]‡. The
particular form of the cluster function is different from that typical for the global scale. In
general, it is dictated byglobal symmetriesof the random matrices, e.g. if they are complex
Hermitian or real symmetric [28]. All specific (nonuniversal) properties are encoded in the
value of local spacing1. For the distancesS such thatS � 1 local expressions match with
the global one, the latter taken at distancesS � [A− B].

It turns out that it is thelocal scaleuniversality that is most relevant for real physical
systems [30]. Namely, the statistics of highly excited bound states ofclosedquantum chaotic
systems of quite different microscopic nature turn out to be independent of the microscopic
details when sampled on the energy intervals which are large in comparison with the mean level
separation, but smaller than the energy scale related by the Heisenberg uncertainty principle
to the relaxation time necessary for a classically chaotic system to reach equilibrium in phase
space [31]. Moreover, the spectral correlation functions turn out to be exactly those which
are provided by the theory of large random matrices on thelocal scale [32,33], with different
symmetry classes corresponding to presence or absence of the time-reversal symmetry.

Motivated by a lack of general theoretical results for spectral properties of the pencils of
random matrices, in section 2 we start by considering an abstract pencil, with real symmetric
H belonging to the Gaussian ensemble of random matrices with IID entries andW being a real
symmetric positive definite one with fixed given entries. We derive an expression for the mean
spectral density of such a pencil and demonstrate that the correlation properties on the local
scale (in the sense defined above) are the same as given by the Wigner–Dyson expressions.
Then, in section 3 we extend our consideration to the case of resonance statistics in the random

† These so-called ‘wide universal correlations’ are, however, quite sensitive to the number of the intervals supporting
nonzero mean eigenvalue density, for an example, see [27].
‡ Strictly speaking, the form of the correlation function of eigenvalue densities for sparse matrices was shown to be
identical to that known for the corresponding Gaussian ensemble providedp exceeds some critical valuep = pl . The
‘threshold’ valuepl is nonuniversal and depends on the form of the distributionP(Ĥ ) [22]. However, direct numerical
simulations, see [29], show that the actual value is 1< pl < 2. Thus, even the existence of two nonvanishing elements
per row already ensure that the corresponding statistics belongs to the Gaussian universality class.
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infinite-rangeLC network, by deriving the mean density and the two-point spectral correlation
function for the resonances.

2. Wigner–Dyson universality for spectra of regular matrix pencils

To study spectral properties of a regular matrix pencilH − λW we employ the Efetov
supersymmetry approach [34, 35]. A pedestrian introduction to the method can be found
in [36].

A convenient starting point is a representation of the spectral densityρ(λ) of real
eigenvaluesλn for the equivalent symmetric eigenvalue problem for the matrixH̃ =
W−1/2HW−1/2 in the following form:

ρ(λ) = 1

N

N∑
n=1

δ(λ− λn) = ∓ lim
ε→+0

1

πN
Im Tr

1

(λ± iε)1− H̃ (14)

which after a trivial manipulation can be rewritten as a derivative

ρ(λ) = ∓Im
1

πN
lim
ε→+0

lim
J→0

∂

∂J
Z±(J, λ) (15)

of a generation functionZ±(J, λ) defined as

Z±(J, λ) = det[(λ± iε + J )W −H]

det[(λ± iε)W −H]
. (16)

In a completely analogous way one expresses the two-point spectral correlation function
(‘cluster function’, see equation (13))

−Y2(λ1, λ2) = 〈ρ(λ1)ρ(λ2)〉 − 〈ρ(λ1)〉〈ρ(λ2)〉 = 1

2π2
ReKcon(λ1, λ2) (17)

as

Kcon(λ1, λ2) = 1

N2
lim
ε→+0

lim
J1,2→0

∂2

∂J1∂J2
[〈Z−(J1, λ1)Z+(J2, λ2)〉 − 〈Z−(J1, λ1)〉〈Z+(J2, λ2)〉]

(18)

where the angular brackets stand for the ensemble averaging and we assume thatλ1 6= λ2. The
expressions above are actually valid in the limitN →∞, where one can show that

lim
ε→+0

lim
J1,2→0

∂2

∂J1∂J2
[〈Z±(J1, λ1)Z±(J2, λ2)〉 − 〈Z±(J1, λ1)〉〈Z±(J2, λ2)〉] = 0

and we used this fact in equation (17).
To facilitate the ensemble averaging we represent the ratio of the two determinants in

equation (16) as the Gaussian integral

Z±(J, λ) = (−1)N
∫ N∏

i=1

[d9i(±)] exp

{
± i

2

N∑
i,j

9
†
i (±)[Wij (λ± iε + J k̂)−Hij ]9j(±)

}
(19)

over four-component supervectors9i(±),

9i(±) =
( ERi(±)
Eηi(±)

)
ERi(±) =

(
ri(±)
r∗i (±)

)
Eηi(±) =

(
χi(±)
χ∗i (±)

)
d9i = dridr∗i

2π
dχ∗i dχi

(20)
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with the componentsri(+), ri(−); i = 1, 2, . . . , N being complex commuting variables and
χi(+), χi(−) forming the corresponding Grassmannian parts of the supervectors9i(±). A
4× 4 diagonal supermatrix̂k = diag(0, 0, 1, 1) takes care of the absence of the sourceJ in
the denomenator of the generating function, equation (16).

Since we are finally dealing with the averaged product of two such generating functions
it is convenient to introduce the 8-component supervectors

8i =
(
9i(+)
9i(−)

)
(21)

and finally 8 = (81, . . . , 8N)
T , as well as the supermatriceŝ3 = diag(1, 1, 1, 1,

−1,−1,−1,−1) andĴk = diag(J1k̂, J2k̂).
It is also useful to remember that we expect to have non-trivial spectral correlations

on the scale comparable with the mean spacing between neigbouring eigenvalues, i.e. when
λ1−λ2 ∝ 1/N . Correspondingly, we introduceλ1 = λ−s/2N ,λ2 = λ+s/2N and henceforth
considers to be of the order of unity. All this allows us to write the product of two generating
functions as

Zλ,s(J1, J2) = Z−(J1, λ1)Z+(J2, λ2)

∫
d8

× exp

{
− i

2
8†3̂⊗H8 +

i

2
8†[λ3̂− (ε − is/2N)1̂ + Ĵk] ⊗W8

}
. (22)

This expression can be easily averaged over the Gaussian distribution ofH by the chain
of identities

〈e− i
28

†3̂⊗H8〉 = e−
a2

4N StrÂ2 =
∫

dQ̂ exp

[
−N

4
StrQ̂2 − i

a

2
8†3̂Q̂8

]
(23)

where a determines the variance of matrix elements ofH, see equation (11) and̂A =
3̂1/2(

∑
i 8i ⊗ 8†)3̂1/2. The last relation which trades the term in the exponent quartic

with respect to8 for an auxilliary integration over the set of supermatricesQ̂ is known as
the Hubbard–Stratonovich transformation and plays a cornerstone role in the whole method.
After substituting equation (23) back into averaged equation (22) and changing the order of
integrations one performs the (Gaussian) integral over8 explicitly. It turns out that in order
to justify all these operations formally, one has to restrict the supermatricesQ̂ to a manifold
paramatrized aŝQ = T̂ −1P̂ T̂ , with P̂ being a block-diagonal Hermitian supermatrix andT̂
belonging to a certain graded coset spaceUOSP(2, 2/4)/UOSP (2/2) ⊗ UOSP(2/2). A
detailed discussion of this fact and an explicit parametrization of theT̂ matrices can be found
in [34–37].

The resulting expression for the averaged product of the generation functions turns out to
be dependent only on eigenvalueswi , i = 1, . . . , N of the matrixW (this fact can be traced
back to the ‘rotational invariance’ of the Gaussian orthogonal ensemble (GOE) formed byH)
and has the following form:

〈Zλ,s(J1, J2)〉 =
∫

dQ̂ exp

[
− N

4
StrQ̂2 − 1

2

N∑
i=1

Str ln{(λ1̂− viQ̂) + (iε + s/2N + Ĵk)3̂}
]

(24)

wherevi = a/wi .
Since we are interested in the limit(ε, J,1/N)→ 0, we can expand the logarithm in the

exponent correspondingly:

Str ln{(λ1̂− viQ̂) + (iε + s/2N + Ĵk)3̂}



Random reactance networks and random matrix pencils 7437

= Str ln(λ1̂− viQ̂) + Str(λ1̂− viQ̂)−13̂(iε + s/2N + Ĵk)

− 1
2 Str[(λ1̂− viQ̂)−13̂Ĵk]

2 + · · · (25)

so that differentiating the exponent over the sourcesJ1,2 yields the pre-exponential factors:

lim
J1,2→0

∂

∂J1
exp{. . .} ∝

N∑
i=1

Str

[
(λ1̂− viQ̂)−1k̂

3̂ + 1̂

2

]
(26)

and

lim
J1,2→0

∂2

∂J1∂J2
exp{. . .} ∝ 2

N∑
i=1

Str

[
(λ1̂− viQ̂)−1k̂

3̂ + 1̂

2
(λ1̂− viQ̂)−1k̂

3̂− 1̂

2

]

+
N∑
i=1

Str

[
(λ1̂− viQ̂)−1k̂

3̂ + 1̂

2

]
N∑
i=1

Str

[
(λ1̂− viQ̂)−1k̂

3̂− 1̂

2

]
. (27)

In the limitN � 1, each sum overi is of the order ofN , so that a contribution of second term
in the expression above is larger by a factor ofN than the contribution of the first one. In other
words, we could restrict ourselves by terms linear in sourcesJ1,2 in expansion (25) above. We
will make use of this fact in the next section when considering a more complicated situation.

Taking all this into account, we arrive at the following integral representation:

K(λ1, λ2) = 1

N2
lim
ε→+0

lim
J1,2→0

∂2

∂J1∂J2
〈Z−(J1, λ1)Z+(J2, λ2)〉

= 1

4N2
lim ε → 0

∫
dQ

× exp

[
−NL(Q̂)− i

2
(ε − is/2N)

∑
i

Str(λ1̂− viQ̂)−13̂

]

×
N∑
i=1

Str

[
(λ1̂− viQ̂)−1k̂

3̂ + 1̂

2

]
N∑
i=1

Str

[
(λ1̂− viQ̂)−1k̂

3̂− 1̂

2

]
(28)

where

L(Q̂) = 1
2 StrQ̂2 +

1

N

∑
i

Str ln(λ1̂− viQ̂). (29)

In the same way one obtains the expression for the mean spectral density:

ρ(λ) = 1

Nπ
lim
ε→0

Im
∫

dQ
N∑
i=1

Str

[
(λ1̂− viQ̂)−1k̂

3̂ + 1̂

2

]

× exp

[
−NL(Q̂)− i

2
ε
∑
i

Str(λ1̂− viQ̂)−13̂

]
. (30)

In the limit N → ∞ the integrals overQ̂ in the expressions above are dominated by
saddle points of the ‘action’L(Q̂) equation (29) which satisfy the equation

Q̂ = 1

N

N∑
i=1

vi

λ1̂− viQ̂
(31)

relevant solutions of which belonging to the integration domainsQ̂ = T̂ −1P̂ T̂ are parametrized
as follows:

Q̂s.p. = t 1̂ + iqT̂ −13̂T̂ (32)
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where the real parameterst, q satisfy forq 6= 0 the following system of two equations:

t = 1

N

∑
i

vi(λ− vit)
(λ− vit)2 + q2v2

i

and 1= 1

N

∑
i

v2
i

(λ− vit)2 + q2v2
i

. (33)

Let us note, that the saddle-point solutions, equation (32), forq 6= 0 form a continuous
manifold parametrized by the supermatricesT̂ .

Using these expressions it is easy to invert the matrix(λ1̂− viQ̂s.p) and check that

N∑
i=1

Str

[
(λ1̂− viQ̂s.p)

−1k̂
3̂± 1̂

2

]
= ±2

λ− vit
(λ− vit)2 + q2v2

i

+iq
vi

(λ− vit)2 + q2v2
i

Str

[
T̂ −13̂T̂ k̂

1̂± 3̂
2

]
(34)∑

i

Str(λ1̂− viQ̂s.p)
−13̂ = i Str[T̂ −13̂T̂ 3̂]

∑
i

viq

(λ− vit)2 + q2v2
i

. (35)

So the problem amounts to substituting these expressions into the integrand of
equations (28), (30) and performing the remaining integration over the coset space parametrized
by the matricesT̂ . The method is described in greater detail in [34–37] and we refer the
interested reader to those papers.

Here, we mention only a few of the most important aspects. First of all, the integral in
equation (30) is given by the so-called PSEW (Parisi–Sourlas–Efetov–Wegner) theorem due
to a specific symmetry of the integrand (in the limitε → 0 the integrand contains only a part
of the integration variables due to the projector(3̂ + 1)/2). The resulting mean eigenvalue
density is merely given by

ρ(λ) = q

πN

∑
i

vi

(λ− vit)2 + q2v2
i

. (36)

In fact, the system of equations (33), (36) turns out to be equivalent to a particular case of some
general results obtained by Pastur and Girko [16].

Substituting expression (36) for the mean spectral density into equations (34) and the
resulting formulae, further to the integral equations (28), (29) for the averaged generating
function, one can express the ‘connected’ part of the two-point correlation functionKcon(λ1, λ2)

as

Kcon(λ1, λ2) = π2ρ2(λ)

4

∫
dµ (T )Str

[
T̂ −13̂T̂ k̂

1̂ + 3̂

2

]
Str

[
T̂ −13̂T̂ k̂

1̂− 3̂
2

]

× exp

{
− iπρ(λ)

4
s Str[T̂ −13̂T̂ 3̂]

}
(37)

with dµ (T ) being an appropriate invariant measure on the coset space. When deriving that
expression from equations (28), (29), (34) we noticed that the ‘disconnected’ part of the
correlation function is again given by PSEW theorem and exactly cancels the contribution
from the few terms in the integrand which are not proportional to the mean densityρ(λ).

Expression (37) is our main result and is quite remarkable: its form coincides exactly
with the corresponding expression for the two-point correlation function of random matrices
from GOE, see e.g. [37]. This fact was first demonstrated by Efetov who managed to perform
a non-trivial integration over the coset-space explicitly [34] and found that it reproduced the
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famous Dyson expression† for the two-point function [28]:

Y2(λ1, λ2) =
(

sinse
se

)2

+
d

dse

(
sinse
se

)∫ ∞
1

dt
sin(set)

t
(38)

wherese = πρ(λ)s is a spectral distances/N measured in units of the local mean spacing
1 = 1/[Nρ(λ)].

To end this section we just mention that our method of deriving equation (37) can be easily
generalized to matrix pencils whose random partH is an arbitrary matrix (real symmetric or
Hermitian) with IID entries following the lines of [22,26]. In the same way one can show that
all higher correlation functions also coincide with GOE expressions.

3. Spectral properties of a ‘full connectivity’ LC network

Now we are well prepared to calculate the mean density of resonances and the corresponding
two-point spectral correlation function of the ‘full-connectivity’LC network as defined by
equations (9), (10). Actually, it is convenient to rescale both matrices in equation (9) as:
H → 1

N1/2H, W → 1
N1/2W . Obviously, this transformation does not change generalized

eigenvalues of the pencilH − λ̃W but facilitates bookkeeping of the leading terms in various
expansions.

In our consideration we follow the pattern of the previous section and introduce the
generation function identical to equation (22):

Zr,s(J1, J2) =
∫ ∏

i

d8i

× exp

{
− i

2N1/2

N∑
i=1

8
†
i

[
(hAi + hBi)3̂− 2iε̃1̂− 2

(
r

N1/2
3̂ + Ĵ

)]
8i

}

× exp

{
i

2N1/2

N∑
i<j

(8
†
i −8†

j )

[
r

N1/2
3̂ + Ĵk + iε̃1̂ +hij 3̂

]
(8i −8j)

}
(39)

where we used that

1
2

∑
i<j

hij (8
†
i −8†

j )B̂(8i −8j) = −
∑
i<j

hij8
†
i B̂8j + 1

2

∑
i

8
†
i B̂8i

(∑
k 6=i

hik

)
for any supermatrixB̂ as long as8†

i B̂8j = 8
†
j B̂8i . We also envisaged that for the full-

connectivity network the resonance density is nonvanishing as long asλ̃ ∼ 1/N1/2 and
introduced the scaled variabler = λ̃N1/2 (see the introduction). Then, the typical spacing
between neighbouring resonances should be of the order of1 ∼ N−3/2. Since we can expect a
nontrivial spectral correlation on the distancesS = λ̃2− λ̃1 comparable with1 we introduced
the quantityε̃ = ε − is/(2N3/2) and considers to be of the order of unity. All other notations
coincide with those in equation (22).

Now we have to perform the averaging overhµν , (µ, ν) = A,B,1, . . . , N , each taking
values of±1 with the equal probabilities. This is done in the limitN →∞ as follows:∏
i<j

〈
exp

{
i

2N1/2
hij (8

†
i −8†

j )B̂(8i −8j)

}〉
=
∏
i<j

1

2

[
exp

{
i

2N1/2
(8

†
i −8†

j )B̂(8i −8j)

}
† The corresponding (unnumbered) expression in the first of the papers in [22] (after equation (45)) contains a misprint.
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+ exp

{
− i

2N1/2
(8

†
i −8†

j )B̂(8i −8j)

}]
=
∏
i<j

{
1− 1

8N
[(8†

i −8†
j )B̂(8i −8j)]

2 + · · ·
}

≈ exp

{
− 1

16N

∑
i,j

[(8†
i −8†

j )B̂(8i −8j)]
2

}
(40)

and in similar way we can also average overhA,i, hB,i . Now introducing the notations

K(8a,8b) = −4ir(8†
a −8†

b)3̂(8a −8b) + [(8†
a −8†

b)3̂(8a −8b)]
2 (41)

f (8) = i

N1/2
8†
(
iε̃1̂ +

r

N1/2
3̂ + Ĵk

)
8− 1

4N
(8†3̂8)2 (42)

we can rewrite the averaged generating function as

Z(J1, J2)av =
∫ ∏

i

d8i exp

{∑
i

f (8i)− 1

16N

∑
ij

K(8i,8j )

}
× exp

{
i

2N1/2

∑
i<j

(8
†
i −8†

j )[i ε̃1̂ + Ĵk](8i −8j)

}
. (43)

For the case of Gaussian real symmetric matrices with independent entries,H, considered
in the previous section, the key point allowing us to make progress was the exploitation of the
Hubbard–Stratonovich decoupling; see equation (23). In a similar way, we proceed here using
a functional generalizationof the Hubbard-Stratonovich identity suggested by us earlier [22]
in the context of studies of the sparse random matrices:

exp

{
− 1

16N

∑
i,j

K(8i,8j )

}
=
∫
D(g)

× exp

{
− N

16

∫
d8a d8b g(8a)C(8a,8b)g(8b) +

i

8

N∑
i=1

g(8i)

}
(44)

where the kernelC(8a,8b) is, in a sense, the inverse of a (symmetric) kernelK(8a,8b):∫
d9 K(8a,9)C(9,8b) = δ(8a,8b) (45)

andδ(8a,8b) plays the role of aδ-functional kernel in a space spanned by the functionsg(8).
Some hints towards the understanding of the identities (44), (45) are given in the appendix.

With the help of these relations one easily brings the averaged generation function
equation (43) to the form

〈Zr,s(J1, J2)〉 =
∫
D(g) exp{−NL(g) + δL1(g)} (46)

L(g) = 1
16

∫
d8a d8b g(8a)C(8a,8b)g(8b)− ln

∫
d8 e

i
8g(8)+f (8) (47)

δL1(g) = ln

[ ∫ ∏
i

d8i exp

{∑
i

(
i

8
g(8i) + f (8i)

)
+

i

2N1/2

∑
i<j

(8
†
i −8†

j )[i ε̃1̂ + Ĵk](8i −8j)

}]

×
[ ∫ ∏

i

d8i exp
∑
i

(
i

8
g(8i) + f (8i)

)]−1

. (48)
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As is clear from these expressions, the termL1(g) is only a small correction to the main term
in the exponent of the functional integral whenN →∞, J, ε → 0. Therefore, the functional
integration overg can be performed by the saddle-point method (cf equations (28), (30)).
The saddle-point configurationgs(8) can be found by requiring the vanishing variation of the
‘action’ L(g) and satisfies the following equation:

g(8a) = i

∫
d8b K(8a,8b)e

i
8g(8b)+f (8b)∫

d8b e
i
8g(8b)+f (8b)

. (49)

When deriving equation (49) we have used (45). It is completely clear that in the limitN →∞
one can safely disregard the termf (8b), equation (42) as being of the next order in 1/N in
comparison withg(8b). From now on we just putf = 0 everywhere.

Given the form of the kernel equation (41), we managed to guess the following explicit
solution to the saddle-point equation:

gs(8a) = 4(r −G1)(8
†
a3̂8a) + 4iG2(8

†
a8a) + i(8†

a3̂8a)
2. (50)

Substituting such an ansatz into equation (49) by a direct calculation one can verify that it
indeed satisfies the saddle-point equation provided the real coefficientsG1,G2 are solutions
of the system of two conjugate equations:

G2 + iG1 =
∫ ∞

0
du exp

{
i

2
u(r −G1 + iG2)− u

2

8

}
G2 − iG1 =

∫ ∞
0

du exp

{
− i

2
u(r −G1− iG2)− u

2

8

}
.

(51)

The following few identities might be helpful when performing a verification of such a fact.
Suppose we have a four-component supervector9 like that defined in equation (20) and
consider a functionF(9) = F̃ (9†9) vanishing on the boundary of integration. Then it is
easy to verify that∫

d9 F(9) = F̃ (0)
∫

d9b (9
†
a9b)F (9b) = 0 (52)

where the first identity is just a particular case of the PSEW theorem mentioned in the previous
section: see, e.g. [36].

For further analysis it is very important that a solution for system (51) exists for arbitrary
−∞ < r < ∞ such thatG2(r) > 0. Later on we see that the mean density of resonances is
merely given byρ(r) = 1

π
G2(r). For |r| � 1, one can easily infer from equations (51) that

G2(r) developes a Gaussian tail:

G2(r � 1) ≈ (π/2)1/2 exp

{
− r

2

2

}
.

It is necessary to mention that equations (51) virtually coincide with those emerging in a study
of density of eigenvalues of a transition matrix on a randomly diluted graph in a limit of large
connectivity performed by Bray and Rodgers [38]: see their equations (20), (21) and figure 1
in their paper. Indeed, two problems have many common features, and the coincidence is
hardly accidental. An indication of a relation between the problems comes from the structure
of the matrixĤ, see equation (9), which is actually very similar to the structure of the matrix
considered by Bray and Rodgers. Moreover, the resonances we study are eigenvalues of the
matrixH̃ =W−1/2ĤW−1/2, and it is easy to write down explicit expressions for the entries
of H̃ because of the simple structure of the matrixW , see equation (9). One finds that
H̃ = 1

N
H + O(1/N3/2) which provides a direct link to [38] in the limitN →∞.
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The most important consequence of the existence of such a solutiongs(8a), see
equation (50), withG2 6= 0 is actually the simultaneous existence of a wholecontinuous
manifoldof the saddle-point solutions parametrized as

gT (8a) = gs(T̂ 8a) with T̂ †3̂T̂ = 3̂. (53)

Indeed, from the invariance property of the kernel equation (41):K(8a,8b) = K(T̂ 8a, T̂ 8b)

and from the (pseudo)unitarity of the matricesT : |SdetT̂ | = 1 it follows thatgs(T̂ 8a) must
be a solution to equation (49) together with any given solutiongs(8a). However, if it had not
been for the conditionG2 6= 0 all these solutions would trivially coincide:gT (8) ≡ g(8) for
any T̂ defined as above, i.e. the symmetry of the solution would coincide with the symmetry
of the equation itself.

In the actual caseG2 6= 0, the presence of the combination8†
a8a which isnot invariant

with respect to a transformation8a → T̂ 8a makes the symmetry of solution (50) lower
than the symmetry of equation (49). This is an example of the very well known effect of
spontaneous symmetry breakdown. The phenomenon makes the situation less trivial and
generates the whole manifold of the saddle-point solutions. Different nontrivial solutions are
actually parametrized by the supermatricesT̂ which are elements of the same† graded coset
spaceUOSP(2, 2/4)/UOSP (2/2)⊗ UOSP(2/2) which appeared in the previous section:
see the discussion after equation (23).

It is simple to satisfy oneself thatL(gs) = 0, and the same obviously holds for the whole
manifoldgT . Therefore, the only term that renders the expression for the generation function
to be non-trivial isδL1(gT ). In the limit (ε, J,1/N)→ 0 we can expand equation (48) as

δL1(gT ) = ln

{
1 +

i

2N1/2

∑
i<j

∫
d8i d8j (8i −8j)

†(iε̃1̂ + Ĵ )(8i −8j)e
i
8 (gT (8i)+gT (8j ))

}
≈ i

2
N3/2

∫
d88†(iε̃1̂ + Ĵ )8e

i
8gT (8) = i

2
N3/2 Str[Ŵ (iε̃1̂ + Ĵ )] (54)

where we introduced a supermatrix:

Wαβ =
∫

d88α8
†
βe

i
8gT (8) (55)

and used the fact that for our purposes it is enough to keep only terms linear with respect to
the source matrix̂J (see the discussion after equation (27)).

To determine the matrix elements ofŴ it is convenient to use the equation

G28
†
a8a + iG18

†
a3̂8a =

∫
d8b(8

†
a3̂8b)(8

†
b3̂8a)e

i
8gs(8b) (56)

which follows from the saddle-point equation (49) and equation (50). Now we make a
transformation:8a,b → T̂ 8a,b, and easily find that

G28
†
aT̂

†T̂ 8a + iG18
†
a3̂8a =

∫
d8b (8

†
a3̂8b)(8

†
b3̂8a)e

i
8gT (8b)

† The following comment is appropriate here. Actually, the conditionT̂ †3̂T̂ = 3̂ defines a graded group
UOSP(2, 2/2, 2)which is slightly different fromUOSP(2, 2/4), since the latter requires acompactparametrization
in the ‘fermionic’ sector, whereas the former is ‘non-compact’ in both ‘bosonic’ and ‘fermionic’ sectors. However,
a detailed investigation of the structure of the saddle-point manifold and the necessity to perform an integration
over matricesT̂ forces one to choose these matrices to be ‘compactified’ in the ‘fermionic’ sector. This is a subtle
feature discussed in much detail in [35]. In principle, such anad hoccompactification can be avoided if one uses two
different matrices:3̂ andL̂ = diag(1, 1, 1, 1,−1,−1, 1, 1)when writing an integral representation for the generating
function, equation (16). Such a freedom of choice always exists because Grassmann integrals are always convergent.
Implementation of such a program can be found, e.g. in [26]. Practically, however, the results are the same as if one
‘compactified’ the matriceŝT when performing the actual calculations.
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=
8∑

α,β=1

8a,α8
†
a,β3αα3ββKααWβα (57)

whereKαα = −1 for α being a ‘fermionic’ index and unity otherwise. Comparing both sides
of this relation (i.e. the coefficients of the quadratic forms with respect to the components of
the supervector8a) yields a relation betweenW , the functionsG1,2 and the matriceŝT :

Ŵ = G2T̂
−13̂T̂ 3̂ + iG13̂ (58)

where we used̂T †T̂ = 3T̂ −13̂T̂ .
Using this fact we find that the averaged generating function is expressed as an integral

over the saddle-point manifold parametrized by the matricesT̂ :

〈Zr,s(J1, J2)〉 =
∫

dµ (T )

× exp

{
i
s

4
G2(r)Str(T̂ −13̂T̂ 3̂) +

i

2
N3/2 Str Ĵk(G2T̂

−13̂T̂ 3̂ + iG13̂)

}
(59)

with dµ (T ) being the invariant (Haar’s) measure on the graded coset space. Here we
assumed an infinitesemal negative imaginary part to be included ins. Remembering that
Ĵk = J1k̂

1+3̂
2 + J2k̂

1−3̂
2 and making the correspondence

G1(r) −→ 1

N

∑
i

λ− vit
(λ− vit)2 + q2v2

i

and G2(r) −→ 1

N

∑
i

qvi

(λ− vit)2 + q2v2
i

(60)

we see that the expression obtained literally coincides† with the averaged generation function
derived in the previous section, that means with the generating function equation (24) after
restricting the integration to the saddle-point manifold equation (32) and expanding with respect
to source terms. Since that generating function underlied the expressions (37) for the two-
point spectral correlation function as well as expression (30) for the mean spectral density,
we immediately extract those quantities for our actual problem. As already mentioned above,
the mean resonance density is given byρ(r) = 1

π
G2(r), and the functional form of the

spectral correlation function is given by the same Wigner–Dyson expression as before, see
equation (38), provided one usesρ(r) for the actual mean resonance density.

Finally, it is necessary to mention that by using the same method it is straightforward to
demonstrate that all higher spectral correlation functions will also be given by GOE expressions.

4. Conclusion

In the present paper we introduced the full-connectivity model of a disordered reactance
LC network and found that its spectral properties in the thermodynamic limitN → ∞
could be efficiently investigated in the framework of a version of Efetov’s supersymmetry
method [34–36] exploiting a generalized Hubbard–Stratonovich transformation introduced by
us earlier [22]. We also studied spectral properties of regular pencils of random matrices
with IID entries. In all cases we were able to derive the mean spectral density as well as
characterize the fluctuation properties of the spectra. The models studied turned out to be
faithful representatives of the Wigner–Dyson universality class.

† An extra factorN1/2 appearing in the exponent equation (59) as compared with similar equations of the previous
paragraph is due to our rescaling:λ̃→ r/N1/2 which also requires the spectral density to be redefined appropriately:
ρ(r) = N−1/2ρ(λ̃).
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Actually, we hope that the present paper may provide a convenient background for the
regular investigation of fluctuations in the electric properties of disorderedLC (more generally,
RL–C) networks, such as the conductanceYAB defined in equation (8), on-site potentialsVi ,
etc. Actually, it is possible to consider anLC-model of a ‘banded’ type (i.e. of a large, but
finite range: see [39,40]) and derive [42] the correspondingd-dimensional nonlinearσ -model
which should adequately describe the properties of the realisticLC-networks [5,7], including
the effects of Anderson localization [41]. These issues will be addressed in forthcoming
publications [42].
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Appendix. A digression on functional Hubbard-Stratonovich transform, equation (44)

In this appendix we present a heuristic demonstration of the validity of relation (44) for some
kernelsK. We are not pretending that we are able to specify under what precise conditions our
formal manipulations are true: this interesting issue deserves to be studied seriously and goes
much beyond our modest goals. Instead, our strategy will be a pragmatic one: to illuminate
the origin of the relations of that kind.

Actually, the fact that8 is a supervector rather than a usual vector is of little importance
for our consideration, so one may think about it as a usual vector (or even scalar). The way to
incorporate anticommuting variables in the consideration sketched below is described in the
appendix A of [39].

Let us then deal with a real symmetric integral kernelK(8a,8b) = K(8b,8a). Then,
generally, we expect a set of real eigenvaluesλν to exist and an orthogonal and normalizable
set of corresponding real-valued eigenfunctionseν(8):∫

d8b K(8a,8b)eν(8b) = λνeν(8a)

∫
d8eν(8)eµ(8) = δµν (A1)

such that the kernelK allows the following representation:

K(8a,8b) =
∑
ν

λνeν(8a)eν(8b) (A2)

where the summation goes over allν such thatλν 6= 0. Then we can write a formal chain of
transformations:

I = exp

{
− 1

2

N∑
i,j=1

K(8i,8j )

}
=
∏
i,j

exp

{
− 1

2

∑
ν

λνeν(8i)eν(8j )

}

=
∏
ν

exp

{
− λν

2

( N∑
i=1

eν(8i)

)2}
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=
∏
ν

∫ ∞
−∞

dzν√
2π

exp

{
− z

2
ν

2
− iλ1/2

ν zν

N∑
i=1

eν(8i)

}
(A3)

=
∫
. . .

∫ (∏
ν

dzν√
2π

)
exp

[
− 1

2

∑
ν

z2
ν − i

N∑
i=1

(∑
ν

λ1/2
ν zνeν(8i)

)]
. (A4)

Again, we do not specify the conditions when it is allowed to interchange the
summations, products and integrations but just assume ‘simple-mindedly’ that the sequence
of transformations presented above does not lead to divergent expressions.

A form of expression (A4) suggests that one should consider it as a definition of a functional
integral going over the space of functions

g(8) =
∑
ν

λ1/2
ν zνeν(8) D(g) ≡

∏
ν

dzν√
2π
. (A5)

Finally, we introduce the kernelC(8a,8b) as

C(8a,8b) =
∑
µ

λ−1
µ eµ(8a)eµ(8b) (A6)

which obviously satisfies∫
d8 C(8a,8)K(8,8b) =

∑
µ

eµ(8a)eµ(8b) ≡ δg(8a,8b) (A7)

where theδg(8a,8b) plays the role of aδ-function in the space spanned by functionsg(8),
equation (A5):∫

d8a g(8a)δg(8a,8b) = g(8b).

Moreover, using equation (A5) it is straightforward to verify that∫
d8b d8a g(8a)C(8a,8b)g(8b) = z2

ν

which finally allows us to rewrite equations (A3), (A4) as

exp

{
− 1

2

N∑
i,j=1

K(8i,8j )

}
=
∫
D(g)

× exp

{
− 1

2

∫
d8b d8a g(8a)C(8a,8b)g(8b)− i

N∑
i=1

g(8i)

}
(A8)

which can be brought to the form of equation (44) by a trivial scaling transformation.
Let us finally note, that our actual kernel equation (41) is of a separable nature and,

moreover, has only a few nonzero eigenvalues. Evidently, in that case the formal manipulations,
equation (A3), are expected to be most harmless.
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