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Abstract. Our goal is to study the statistical properies of ‘dielectric resonances’ which are poles
of conductance of a large randad network. Such poles are a particular example of eigenvalues
An Of matrix pencilsH — AW, with W being a positive definite matrix anef a random real
symmetric one. We first consider spectra of the matrix pencils with independent, identically
distributed entries oH. Then we concentrate on an infinite-range (‘full-connectivity’) version of

a randomLC network. In all cases we calculate the mean eigenvalue density and the two-point
correlation function in the framework of Efetov’s supersymmetry approach. Fluctuations in spectra
turn out to be the same as those provided by the Wigner—Dyson theory of usual random matrices.

1. Introduction

Large random reactance networks (that is networks made of random mixture of capacitances
and inductances) possess a peculiar property first noticed by Dykhne [1]: they have a finite
real conductance and thus can disperse an electric power. The explanation of this somewhat
paradoxical property is simple, however. Indeed, if such a network is large enough there always
exist circuits of ‘resonance type’, with (purely imaginary) conductance showing poles at some
frequencies. Then the real part of the conductance as a function of frequency consists of a
set ofs-like peaks at those resonance frequencies. When the volume of the network grows to
infinity, this set becomes increasingly dense. Then, adding an arbitrarily small (infinitesemal,
but fixed) active part to all inductances (one may think, e.g. of the inductalcesach bond

being in series with a weak resistankeresults in a finite active resistance of the network.

A random mixture of two active conductances is very well studied in correspondence with
the bond percolation problem, see e.g. [2]. At the same time, the random reactance networks
are relatively less studied.

It is necessary to mention that the randaidi (more generallyR L—C) networks emerge
in various physical contexts. As was shown long ago by Shender [3], the conductance of the
randomL C network turns out to be intimately related to properties of collective excitations in
spin glasses. The mapping between the two problems is possible by an analogy first noticed by
Kirkpatrick [4] between the Kirchhoff law and the equation of motion for the spin operators.

More recently,R L—C networks were claimed to be an adequate model for describing the
optical absorption in disordered metal films, see [5] and references therein, which showed some

T On leave from Petersburg Nuclear Physics Institute, Gatchinal88350, Russia.
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unusual features. This fact motivated Luck and collaborators to perform a series of insightful
numerical investigations of the two-dimensio®al—C arrays [6, 7].

Since it is the conductance poles (resonances) of.thieetworks which dominate the
properties of the weakly dissipatieL—C networks, it is natural to try to understand their
properties in greater detail. To access those poles it is convenient, following [7, 8], to start with
the Kirchhoff equations for the electric potential at vertice$ a network:

Zaij(‘/i -Vj)=0 1)
J

where the summation goes over all vertigaghich are neighbours of a givénThe Kirchhoff
equations (1) should be complimented with boundary conditions at the electrodes. For a two-
terminal geometry one assumis= 0 (resp.V; = V) for the vertices belonging to the left
(resp. right) terminal.

It is useful to introduce the (positive semidefinite) Laplace operton the network by

(DV)i = (V; = V) e
j

with the convention tha¥; = 0 on both electrodes.

In a randomLC network each conductance at frequenty= w/2x is equal to either
oo = iCw or o1 = (iLw)~%, with specified probabilities (in what follows we concentrate on
the case of equal probability for finding andC bonds in the network). Then, the Laplace
operator can be written as a sub + D; of its components on thé- and C-bond sets,
respectively. It is easy to show that the poles of the conductance occur at frequénoies
by the roots of the equation [7, 8]:

det(D;, —AD) =0 )
where we introduce the ratio

oo (w/wo)?

A= =
oo—o1 l+(w/wp)?

0<r<1 4)

with wg = 1/(LC)/? being a characteristic resonant frequency oftidenetwork.

The simplest, but very informative way to understand properties of the random binary
mixtures,on averageis to write an equation for the mean conductabicesing an effective-
medium approximation (EMA). For a network with a coordination numbend equal
concentrations ofy- ando;-bonds it reads as follows [4]:

- oo " - o1 N
200+ (z—2)T 201+ (z—2%
Analysing the solution of this quadratic equation as a functiohiofthe interval 0< A < 1,
one finds that generically far> 4 the real part ok (1) is only non-zero inside some interval
Amin(z) < A < Amax(z). According to the discussion above it means that the mean density of
resonances is only finite inside that interval.

As usefuland simple asitis, the EMA suffers from an essential drawback: it systematically
neglects fluctuations, whereas taking the fluctuations into account could be important. For
example, as was noted in[3, 7], the existence of sharp edges.. was an artifact of the EMA
approximation. In fact, the density of the resonances is never exactly zero inside the whole
intervali € [0, 1] due to the so-called Lifshitz tails, which is purely a fluctuation phenomenon.
Apart from that, it seems hard to construct the EMA as a systematic approximation with respect
to some small parameter, though there are indications that it becomes progressively exact for
higher spatial dimension$[9] and can be an extremely well-working one for many realistic

0. (5)
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Figure 1. A schematic view of the full-connectivity graph with three
internal nodes. One direct bond connecting the terminal nadesd B
is excluded.

systems [4]. Therefore, itis not clear how to correct it systematically or how to take fluctuation
effects into account.

These unsatisfactory features should be contrasted with the status of the mean-field
approximation in the theory of magnetism, with which EMA shares its main ingredients.
As is well known, the mean-field equations become exact for the model with the infinite range
of spin interaction. Even for strongly disordered spin systems such as spin glasses the latter
model provides an adequate basis for constructing a mean-field theory with many non-trivial
properties [10].

It is also natural to try to consider a similar type of model for the disordered reactance
networks. This just amounts to considering the Kirchhoff equations (1) on a disorfdéired
connectivitygraph of N vertices (nodes) connected (N — 1)/2 edges (bonds), each
independently taking a valug or ;.

Actually, we find it convenient to consider a graph with+ 2 nodes, among them two

‘terminal’ nodes (labelledd and B, respectively) are singled out by being attached to the
external voltage, so that the potentialais equal toV, whereas the potential &tis kept zero.
The rest of theV ‘internal’ nodes are labelled by indicés= 1, ..., N and the corresponding
(induced) potentials are denoted with The nodes are connected in a full-connectivity graph
of (N +2)(N +1)/2 — 1 bonds, with a single bond being excluded for obvious reasons: that
connecting terminald and B directly, see figure 1.

We then attribute conductancey, = o,,, u,v = A,B,1,..., N to each bond.

It is convenient to introduce thre&y-component vectorsiv = (Vi,..., V)T, o, =
(0a1y .- 0an), 05 = (0p1,...,08n)T (here we used’ to indicate the transposition) and
N x N matrix X with the following structure:
N
0A1+031+Zk¢101k —012 —O1N
N
5 — —021 op2 top2t Zk;ﬁz o2% ... —O2N
—0ON1 —ON2 ... OpaNtTopnN T Z#N ONk

In these notation®/ + 1 Kirchhoff equations (1) for the internal nodes, and one for the
nodeB) can be written, respectively, as
Sv=Vo, opu=1I (6)
wherel stands for the total current flowing outwards through the terminal Bodkhis system
of equations can be readily solved yielding the expression for the network conductance:
1
Yap = V= opX o, (1)

If we now deal with a binary networks when eagh is o with a probabilityp ando;
with the probability 1— p it is convenient to introduce the ‘symmetric’ variablgg such that
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]’l,‘j =-1if 0jj = 00 and/’l,‘j =1if ojj = 01, SO thata,»j = %([O’o +O'1] + [O']_ — O'o]h,'j). In
terms of these variables the network conductance equation (7) can be written as
1
Yab = Yap/00 = ——[hT — e ] [ﬁA he] (8)

wherex =24 — 1,¢" = (1,1,...,1), h} = (hBl,...,hBN) andN x N matricesW, H
have the following elements:

Wij=(WN+245; -1 H;j = 6;; (hAi +hip+ Zhik> (A — 8;))hi;. ()]
ki
With these expressions in hand we see that resonances of our network are determined by values
of A satisfying the condition
dettH — AW) = 0. (10)

Of course, it is evident that the full-connectivity construction would be a completely
inadequate one for describing the percolation problem which dominates the properties of binary
mixtures of two real conductances. We are, however, interested in studying the resonances
of disorderedL C networks, and the existence of such resonances is in no way precluded by
‘all-to-all’ geometry. We find that such a model turns out to be, in essence, exactly soluble in
the limit N > 1. We start by deriving the mean density of the resonances which turns out to be
a function of the scaled variabte= AN/2. One can already enwsage such a scaling from the
EMA result, equation (5), which far > 1 gives|Apinmax — 2| X Aminmax ~ 2~ 2. Atthe
same time, in contrast to EMA, the support of the spectrum in the |nf|n|te range model does
not have artificial sharp edgé%i,,,m,”, but rather the mean spectral density) smoothly
decays to zero as long as—> oo asp(r) « e"/2,

Of more interest is the fact that the infinite-range model opens the possibility to study
fluctuations of various quantities. In the present paper we concentrate on spectral fluctuations
and, correspondingly, study the two-point correlation function of the resonance densities. The
latter turns out to be essentially the same as given by the famous Wigner—Dyson theory of
random matrix spectra. This fact favourably agrees with overall numerical results [7] for the
resonance spectra of two-dimensional disordér€detworks. The origin of relatively small,
but noticable deviations from the Wigner-Dyson statistics detected in [7] remains unclear for
us at the moment and could be related to two-dimensional features of the networks studied
there which are not captured adequately by our infinite-ranged model. This issue deserves
further investigation.

Actually, finding the set of satisfing equation (3) or (10) is an example of the generalized
eigenvalue problem. The combination of matrid@s — AD or H — AW, in this respect,
is known in the mathematical literature apencil of matriceg11] or just the matrix pencil.

The theory of the matrix pencils has many important applications such as, e.g., vibration and
bifurcation analysis in complicated structures [12] and game theory [13].

At the same time, it seems that the present knowledge on the statistical properties of
generalized eigenvalues of the pencils of random matrices is rather scarce. In [14] the authors
considerthe mean number and the density of real eigenvalues for affenre® , with bothH
andW being matrices with all independent real entries and no symmetry conditions imposed.
Atthe same time, our original physical problem has motivated our interest in the pencils formed
by realsymmetricmatricesH, W, with W being positive definite. It is clear th& > 0
ensures all the eigenvalues of the matrix pencils to be real (in the literature such pencils are
sometimes called theegular ones [11]). Indeed, in that case the generalized eigenproblem:
Hx = AWy is equivalent to a usual oneW Y2HW Y2y = Ly, y = W¥2x, with
H = W-Y2HW %2 peing a real symmetric matrix.
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The mean eigenvalue density for matrices of similar types (when ¥éthnd H are
random) was studied in some generality starting from the work by Marchenko and Pastur,
see [15]. In fact, the mean eigenvalue density can be found for the enséhiméth H
being a real symmetric matrix with independent, identically distributed (lID) entries using a
generalized version of the results of Pastur [16]. We are, however, not aware of any systematic
study of spectral correlations of regular pencils of the random matrices.

This is in contrast to the very intensive research on eigenvalues of the random matrices
(which is a particular case &V = 1) performed in recent years in the domain of theoretical
and mathematical physics [17]. Below, we summarize the most important facts found from
these studies.

As is well established [18-20, 22, 23], the statistical properties of real eigenva)uads
largeN x N self-adjoint random matriceH are to a large exteniiversal i.e. independent
of the details of the distributior’8(H) of their entries.

It is important to mention the existence, in general, of two different characteristic scales
in the random matrix spectra: tlghobal one and thdocal one. The global scale is that on
which the eigenvalue density, defined@s<) = % Tr8(X — H), changes appreciably with
its argumentX when averaged ové?(H). For matrices whose spectrum has a finite support
in the intervalX € [A, B] the global scale is just the length of this interval.

In contrast, the local scale is that determined by the typical separatien X; — X;_;)
between neighbouring eigenvalues situated around a pQintith the brackets standing for
the statistical averaging. It is therefore given hy= ((Np(X)))~L. If we are interested in
those values oK that are sufficiently far from the edges of the spectra the global scale is,
roughly speaking, a factor @¥ larger than the local one. In other words, the mean density
(p(X)) can be considered as a constant one on the acale

The degree of universality is essentially dependent on the chosen scale.

As to the global scale universality, first of all one can mention that for the matrices with
IID entries under quite general conditions (see, e.g., [24] and references therein) the mean
density is given in the limilv — oo by the so-called ‘Wigner semicircle law’:

N (11)

(p(X)) = NA

2ma?

In this expression the parametejust sets the global scale in the sense defined above. It is
determined by the expectation valué = (% Tr H?). It is generally accepted to scale the
entriesH;; ~ 1/NY/2, i.e. in such a way that stays finite wherV.— oo, the local spacing
between eigenvalues in the neighbourhood of the poititerefore being o 1/N.

From the point of view of universality the semicircular eigenvalue density is not extremely
robust. One can most easily violate it by considering an important class of the so-
called ‘invariant ensembles’ characterized by a probability density of the fo¢#l) o
exp—N Tr V(H), with V(H) being an even polynomial. The corresponding eigenvalue
density turns out to be highly nonuniversal and is determined by the particular form of the
potential V(H). Only for V(H) = H? is it given by the semicircular law, equation (11).
Actually, any ‘deformation’H; = Hy + H of the ensembldd with IID entries by a given
fixed matrix Hy results in the mean eigenvalue density belonging to a family of ‘deformed
semicircular laws’ as discovered by Pastur [16].

Moreover, one can easily have a non-semicircular eigenvalue density even for real
symmetric matricess; S;; = S;; with IID entries, if one keeps the mean number of non-
zero entriesp, per column to be of the order of unity when performing the linit—> oco.
Thisis a characteristic feature of the so-calpdrsaandom matrices [22,25,26] characterized
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by the following probability density of a given entsy;:
14 14
P(Si) = (1= 2805, ) + 1h(Sy) (12)

whereh(s) = h(—s) is an arbitrary even distribution function satisfying the conditions:
h(0) < oo; [ h(s)s?ds < oo.

Remarkably, a much more profound universality emerges for the two-point correlation
spectral function defined as

(p(XDp(X2))e = (p(X1))8(X1 — X2) — Vo(X1, X>) (13)

where we defined the connected part of the correlation function in a usual madmsy: =

(AB) — (A)(B). The nontrivial part of the spectral correlator is called thester function
W2(X3, X2). Itis one of the most informative statistical measures of the spectra [28]. It turns
out that the global scale behaviour)3f( X1, X>) (i.e. one for the distancgbeing comparable
with the support of the spectrum in the linlit — oo) is already rather universal. It is the
same for all the ‘invariant ensembles’ [19] and for those with [ID matrix elements [23] and is
determined only by the positions of the edge points B] of the spectrumt.

Even more interesting is the fact that universality of the correlation function equation (13)
(as well as of all higher correlation functions) extends to the local scale, i.e. for the distances
|X; — X»| comparable withA. This fact was rigorously proved for the unitary invariant
ensembles [18], extended to the unitary ‘deformed’ ensembles [21] and heuristically verified
for other invariant ensembles [20] as well as for the ensembles of sparse matrices [22]F. The
particular form of the cluster function is different from that typical for the global scale. In
general, it is dictated bglobal symmetriesf the random matrices, e.qg. if they are complex
Hermitian or real symmetric [28]. All specific (nonuniversal) properties are encoded in the
value of local spacing\. For the distance$ such thatS > A local expressions match with
the global one, the latter taken at distanSes [A — B].

It turns out that it is thdocal scaleuniversality that is most relevant for real physical
systems [30]. Namely, the statistics of highly excited bound statelsédquantum chaotic
systems of quite different microscopic nature turn out to be independent of the microscopic
details when sampled on the energy intervals which are large in comparison with the mean level
separation, but smaller than the energy scale related by the Heisenberg uncertainty principle
to the relaxation time necessary for a classically chaotic system to reach equilibrium in phase
space [31]. Moreover, the spectral correlation functions turn out to be exactly those which
are provided by the theory of large random matrices ordbal scale [32, 33], with different
symmetry classes corresponding to presence or absence of the time-reversal symmetry.

Motivated by a lack of general theoretical results for spectral properties of the pencils of
random matrices, in section 2 we start by considering an abstract pencil, with real symmetric
H belonging to the Gaussian ensemble of random matrices with 1D entrig§ dmihg a real
symmetric positive definite one with fixed given entries. We derive an expression for the mean
spectral density of such a pencil and demonstrate that the correlation properties on the local
scale (in the sense defined above) are the same as given by the Wigner—Dyson expressions.
Then, in section 3 we extend our consideration to the case of resonance statistics in the random

T These so-called ‘wide universal correlations’ are, however, quite sensitive to the number of the intervals supporting
nonzero mean eigenvalue density, for an example, see [27].

T Strictly speaking, the form of the correlation function of eigenvalue densities for sparse matrices was shown to be
identical to that known for the corresponding Gaussian ensemble proyieleceeds some critical valye= p;. The
‘threshold’ valuep; is nonuniversal and depends on the form of the distribJti6H) [22]. However, direct numerical
simulations, see [29], show that the actual valueis p; < 2. Thus, even the existence of two nonvanishing elements

per row already ensure that the corresponding statistics belongs to the Gaussian universality class.
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infinite-rangeL C network, by deriving the mean density and the two-point spectral correlation
function for the resonances.

2. Wigner—-Dyson universality for spectra of regular matrix pencils

To study spectral properties of a regular matrix petil— AW we employ the Efetov
supersymmetry approach [34, 35]. A pedestrian introduction to the method can be found
in [36].

A convenient starting point is a representation of the spectral depsity of real
eigenvaluesi, for the equivalent symmetric eigenvalue problem for the mafix =
WY2HW Y2 in the following form:

1Y 1
)= — Sh—=2)=FIm —ImTr ——— 14
p(L) N; ( F Jim — PERRY (14)
which after a trivial manipulation can be rewritten as a derivative
i . 9
p(A) =FIm— lim lim —Z.(J, ) (15)

TN e>+0J—-00J
of a generation functio®.. (J, 1) defined as
det[A +ie+ /HW —H
2.0 = UG e+ ) I (16)
det[(n +ie)W — H]
In a completely analogous way one expresses the two-point spectral correlation function
(‘cluster function’, see equation (13))

1
—Y2(A1, A2) = (p(A1)p(A2)) — (p(A1))(p(A2)) = ﬁReKcon (A1, 22)  (17)

as
2
[(Z-(J1, A1) 2+(J2, 22)) — (Z-(J1, A1) (Z+(J2, 12))]

(18)

where the angular brackets stand for the ensemble averaging and we assumetthat The
expressions above are actually valid in the liMit> oo, where one can show that
2

1
Keon(A1, o) = — lim_ lim
(A1, 22) N2 ¢5+071,—0 d0J10J>

lim

e—>+011_i2r20 aJlaJZ[(Zi(JL M) Z+(J2, 12)) — (Z+£(J1, M) (24 (J2, A2))] =0

and we used this fact in equation (17).
To facilitate the ensemble averaging we represent the ratio of the two determinants in
equation (16) as the Gaussian integral

N - N
Zo(J, ) = (DN f ]—[[dw,-(i)] exp{ + '5 Z W (B [Wi; (0 e + Jk) — H,-,]\yj(i)}
i=1 i,j

(19)
over four-component supervectobs(+),
R; () 5 ri ()
‘I’i(i)=<—>' ) Ri(ﬂ:)=< « >
i () 776 (20)

> _ Xl(:l:) R dridrl * .
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with the components; (+), r;(—); i = 1,2, ..., N being complex commuting variables and
xi(+), xi(—) forming the corresponding Grassmannian parts of the supervebtoty. A
4 x 4 diagonal supermatrik = diag(0, 0, 1, 1) takes care of the absence of the soufde
the denomenator of the generating function, equation (16).

Since we are finally dealing with the averaged product of two such generating functions
it is convenient to introduce the 8-component supervectors

YD)
= (%(—)) &0

and finally @ = (d,...,®y)7, as well as the supermatrices = diag(l,1,1,1,
—1, -1, -1, —1) andJ; = diag(J1k, Jok).

It is also useful to remember that we expect to have non-trivial spectral correlations
on the scale comparable with the mean spacing between neigbouring eigenvalues, i.e. when
A1—X2 o 1/N. Correspondingly, we introduég = A —s/2N, A, = A+s/2N and henceforth
considers to be of the order of unity. All this allows us to write the product of two generating
functions as

29, Ja) = 2 (J1, ) Ze (o, o) / do

x exp{—'éqﬂ[\ ® Hd + 12q>T[,\A —(e—is/2N)i+i]® ch} . (@)

This expression can be easily averaged over the Gaussian distributtdrbptthe chain
of identities

(e’lﬁ@ A®H<I>) e*msm /dQ exp|:—— StrQ? — ©TAQ¢] (23)

wherea determines the variance of matrix elementsHf see equation (11) and =
AV2(Y, ®; ® ®T)AY2. The last relation which trades the term in the exponent quartic
with respect to® for an auxilliary integration over the set of supermatri¢gss known as

the Hubbard—Stratonovich transformation and plays a cornerstone role in the whole method.
After substituting equation (23) back into averaged equation (22) and changing the order of
integrations one performs the (Gaussian) integral d@vexplicitly. It turns out that in order

to justify all these operations formally, one has to restrict the supermafpidesa manifold
paramatrized ag = T-1PT, with P being a block-diagonal Hermitian supermatrix ahd
belonging to a certain graded coset spaa@SP(2,2/4)/UOSP(2/2) @ UOSP(2/2). A
detailed discussion of this fact and an explicit parametrization of theatrices can be found

in [34-37].

The resulting expression for the averaged product of the generation functions turns out to
be dependent only on eigenvalues i = 1, ..., N of the matrixW (this fact can be traced
back to the ‘rotational invariance’ of the Gaussian orthogonal ensemble (GOE) forniyl by
and has the following form:

N

(225, Jo)) = f do exp[ - % StrQ? — % Z Strin{(A1 — v; Q) + (ie +5/2N + fk)[\}}
i=1

(24)

wherev; = a/w;.
Since we are interested in the lint&, J, 1/N) — 0, we can expand the logarithm in the
exponent correspondingly:

Strin{(A\1 — v; Q) + (i€ +5/2N + J)A}
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= Strin(A\1 — v; Q) + Str(.1 — v; Q) YA€ +5/2N + Jy)

—1st[01- v 0) tASIE+ - (25)
so that differentiating the exponent over the soutesyields the pre-exponential factors:
3 al . A oA+
lim — ex Str| W1 —v;0)" Y% 26
Jim o7 el }«Z; % v Q) 2} (26)

and

, .
9 ——expl.. }(XZZStr[(M—v,Q) 1k—(kl—v,Q) 1le:|

lim
J12—0 0J10J2 =1

N N 2
3 s [@i - U,Q)—lléAT”} st [@1 - uiQ)—lléAT_l} e
i=1 i=1

Inthe limit N > 1, each sum ovaris of the order ofV, so that a contribution of second term
in the expression above is larger by a factoNothan the contribution of the first one. In other
words, we could restrict ourselves by terms linear in souwgesn expansion (25) above. We
will make use of this fact in the next section when considering a more complicated situation.
Taking all this into account, we arrive at the following integral representation:
2

K1, A2) = lim i Z_(Jy, M) Z4(Jo, A
(A1, A2) = e|—>+0J1|2T>03J18J2( (J1, A1) Z+(J2, A2))
N _ . N
x exp[ — NL(Q) = 5(e = is/2N) Z Str(Al — v; 0) A}
N A A N A A~
o ~ ~A+1 o A ~A—-1
X;Str[(kl v Q) %h—, };sn[(u v Q) h— } (28)
where

. .1 A .
1 2
L(Q) =5StrQ°+ v Ej Strin(A1 — v; Q). (29)
In the same way one obtains the expression for the mean spectral density:

1. o s A A+l
p(x):ml@omfin;Str[(,\l—viQ) kT:|

X exp|:—N£(Q) - iée > sl -y, Q)lfx}. (30)

In the limit N — oo the integrals ovel in the expressions above are dominated by
saddle points of the ‘actionf(Q) equation (29) which satisfy the equation

. 1 N
0=32 0" (31)

relevant solutions of which belonging to the integration dom@ins 7127 are parametrized
as follows:

A

O, =t1+igT AT (32)
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where the real parametersy satisfy forg # 0 the following system of two equations:

_ v;i(A — v;t) _ 1 vi2
= — Z @ and 1= N Z,: _— (33)

— ;)2 + g2 v (A—vit)2+q2vi2

Let us note, that the saddle-point solutions, equation (32)gfgt 0 form a continuous
manifold parametrized by the supermatrides A A
Using these expressions it is easy to invert the matrix— v; Q,.,) and check that

N .
~ ~ ~AE1L A — vt
Str| (A1 —v; 0, ,) %k =42 d
; {( v Q0 p) k= } PR

. i C i aanlEA
tig———— S| TIATR=—— (34)
(A — v;1)? + q2v;

ZStr(Al —v:0,,)"'A = iSt[FTATA] Z # (35)
—v q?v

So the problem amounts to substituting these expressions into the integrand of
equations (28), (30) and performing the remaining integration over the coset space parametrized
by the matricess". The method is described in greater detail in [34—37] and we refer the
interested reader to those papers.

Here, we mention only a few of the most important aspects. First of all, the integral in
equation (30) is given by the so-called PSEW (Parisi-Sourlas—Efetov—Wegner) theorem due
to a specific symmetry of the integrand (in the limit> O the integrand contains only a part
of the integration variables due to the projectdr+ 1)/2). The resulting mean eigenvalue
density is merely given by

V;
P =N G €9

In fact, the system of equations (33), (36) turns out to be equivalent to a particular case of some
general results obtained by Pastur and Girko [16].

Substituting expression (36) for the mean spectral density into equations (34) and the
resulting formulae, further to the integral equations (28), (29) for the averaged generating
function, one can express the ‘connected’ part of the two-point correlation furGtipth 1, A»)
as

2p2(x W aaanl4A \ aaarl— A
Keon(A1, X2) = i ‘)4( )/du (T)Str|:T1ATk 5 :|Str|:TlATk 5 }

exp{ B irr,(;r()»)

Str[T~ f[\]} (37)

with du (T) being an appropriate invariant measure on the coset space. When deriving that
expression from equations (28), (29), (34) we noticed that the ‘disconnected’ part of the
correlation function is again given by PSEW theorem and exactly cancels the contribution
from the few terms in the integrand which are not proportional to the mean dex{sity
Expression (37) is our main result and is quite remarkable: its form coincides exactly
with the corresponding expression for the two-point correlation function of random matrices
from GOE, see e.g. [37]. This fact was first demonstrated by Efetov who managed to perform
a non-trivial integration over the coset-space explicitly [34] and found that it reproduced the
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famous Dyson expressiont for the two-point function [28]:

. 2 . 00 .
Vol hp) = (smse) +di<smsg>/ dtsm(sgt) (38)
e Se Se 1 t

wheres, = mp(1)s is a spectral distance/ N measured in units of the local mean spacing
A =1/[Np)].

To end this section we just mention that our method of deriving equation (37) can be easily
generalized to matrix pencils whose random Hris an arbitrary matrix (real symmetric or
Hermitian) with IID entries following the lines of [22,26]. In the same way one can show that
all higher correlation functions also coincide with GOE expressions.

3. Spectral properties of a ‘full connectivity’ LC network

Now we are well prepared to calculate the mean density of resonances and the corresponding
two-point spectral correlation function of the ‘full-connectivityC network as defined by
equations (9), (10). Actually, it is convenient to rescale both matrices in equation (9) as:
H — NMH W — Nqu Obviously, this transformation does not change generalized
eigenvalues of the pendf — AW but facilitates bookkeeping of the leading terms in various
expansions.

In our consideration we follow the pattern of the previous section and introduce the
generation function identical to equation (22):

2", b)) = /Hdcpi
xexp{ Nl/ZZdD [(hA,+h3,)A 2iel — 2( A+J>} }

xexp{ NmZ( —<I>)[WA+Jk+i€i+hijf\](<D,-—<I>j)} (39)

i<j
where we used that
1 t \ A
EZh,-j(cp,. —®DB(®; — @ Zh,,cp B, +ZZ<1> B, (Zh,k)
i<j i<j k#i

for any supermatrix as long as:bl. B, = d>de>i. We also envisaged that for the full-
connectivity network the resonance density is nonvanishing as long as1/NY2 and
introduced the scaled variabte= AN'? (see the introduction). Then, the typical spacing
between neighbouring resonances should be of the grdBMTN*?’/Z. Since we can expecta
nontrivial spectral correlation on the distandes: A, — A; comparable withA we introduced
the quantitye = ¢ — is/(2N%/?) and consides to be of the order of unity. All other notations
coincide with those in equation (22).

Now we have to perform the averaging ovey,, (1, v) = A, B,1,..., N, each taking
values oft1 with the equal probabilities. This is done in the limit— oo as follows:

H<exp{ ZNl/Zh,j(cpT *HB(®; - q>,-)}>

i<j
=115 [exp{ZNl/z@T <1>})1§(<1>i—<1>j)}
i<j

T The corresponding (unnumbered) expression in the first of the papers in [22] (after equation (45)) contains a misprint.
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+ exp{ 2N1/2((DT cp;f)é(@,» — <I>j)}:|

—]"[{1——[(<1>T ©)B(d; — @)+ }

i<j

~ exp{ Z[(@* O B(D; — ;)] } (40)

16N

and in similar way we can also average okgl;, hp ;. Now introducing the notations
K(@q, ®p) = —4ir(®] — DHA(D, — By) + [(<I>T ©))A(D, — D)]” (41)
F(@) = ——of (I61 + N—A Jk> ®— —(<I> TAD)2 (42)

N1/2
we can rewrite the averaged generating function as

Z(J1, P)ay = / [do; exp{ D f(@) - 16N me D, )}

x exp{

[
2N1/2

Z(@}—@j)[iéhfk](q% —cbj)}. (43)
i<j

For the case of Gaussian real symmetric matrices with independent eHiriesnsidered
in the previous section, the key point allowing us to make progress was the exploitation of the
Hubbard—Stratonovich decoupling; see equation (23). In a similar way, we proceed here using
afunctional generalizatiof the Hubbard-Stratonovich identity suggested by us earlier [22]

in the context of studies of the sparse random matrices:

{ Tov ZK@,, @, )} fD(g)

N i &
16 / dd, dd, g(P,)C(D,, p)g(Py) + ;_3 ;g(d%)} (44)

where the kernef (®,, ®;) is, in a sense, the inverse of a (symmetric) kekdgb,,, ®;):

X exp{ -

/d\D K(®,, V)C(Y, Op) = §(D,, Dy) (45)

ands (®,, ®,) plays the role of &-functional kernel in a space spanned by the functigids).

Some hints towards the understanding of the identities (44), (45) are given in the appendix.
With the help of these relations one easily brings the averaged generation function

equation (43) to the form

(25 (I, ) = / D(g) expl—NL(g) + 5L1(g)) (46)
L(g) = / dd, ddy, g(P,)C(D,, p)g(Pp) — f dd es8(@)*/ (@) (47)
8L1(g) =In [ / H do, exp{ Z ('gg(cbo + f(cb»)

2N1/2 Z(CDT (oM )[|61+Jk]((b —&; )}i|

i<j

[ / [Tao, epo( §(®) + f(@, ))r. 48)
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As is clear from these expressions, the te&lig) is only a small correction to the main term

in the exponent of the functional integral wh&n— oo, J, ¢ — 0. Therefore, the functional
integration overg can be performed by the saddle-point method (cf equations (28), (30)).
The saddle-point configuratign) (®) can be found by requiring the vanishing variation of the
‘action’ L(g) and satisfies the following equation:

(@) =i [ ddy, K(D,, Dy)ess( @/ ()
$R= [ ddb, ess(@+/ (@)

When deriving equation (49) we have used (45). Itis completely clear that in theMimsit co
one can safely disregard the terfud,), equation (42) as being of the next order inVLin
comparison withg (®,). From now on we just puf = 0 everywhere.

Given the form of the kernel equation (41), we managed to guess the following explicit
solution to the saddle-point equation:

2(D,) = 4r — G1)(PTAD,) + 4G (D] d,) +i(D]AD,)2. (50)

(49)

Substituting such an ansatz into equation (49) by a direct calculation one can verify that it
indeed satisfies the saddle-point equation provided the real coefficignts, are solutions
of the system of two conjugate equations:

00 H 2
G2+iG1:/ duexp{lu(r—cl+iG2)—”—}
0 2 8 51
o i u® (51)
Gz—iG]_:/ duexp ——u(r—Gl—iGg)— —_— .
0 2 8

The following few identities might be helpful when performing a verification of such a fact.
Suppose we have a four-component superveétdike that defined in equation (20) and
consider a functiorF (¥) = F(¥Tw) vanishing on the boundary of integration. Then it is
easy to verify that

/ dv F(¥) = F(0) / dw, (W) F(w,) =0 (52)

where the first identity is just a particular case of the PSEW theorem mentioned in the previous
section: see, e.g. [36].

For further analysis it is very important that a solution for system (51) exists for arbitrary
—o00 < r < oo such thatG,(r) > 0. Later on we see that the mean density of resonances is
merely given byp (r) = %Gz(r). For|r| > 1, one can easily infer from equations (51) that
G,(r) developes a Gaussian tail:

r

2
Go(r> 1)~ (n/Z)l/zexp{ 5 } )

Itis necessary to mention that equations (51) virtually coincide with those emerging in a study
of density of eigenvalues of a transition matrix on a randomly diluted graph in a limit of large
connectivity performed by Bray and Rodgers [38]: see their equations (20), (21) and figure 1
in their paper. Indeed, two problems have many common features, and the coincidence is
hardly accidental. An indication of a relation between the problems comes from the structure
of the matrixH, see equation (9), which is actually very similar to the structure of the matrix
considered by Bray and Rodgers. Moreover, the resonances we study are eigenvalues of the
matrix H = W-Y2HW %2 and it is easy to write down explicit expressions for the entries

of H because of the simple structure of the matix, see equation (9). One finds that

H = 1 H + O(1/N*?) which provides a direct link to [38] in the limi¥V — oc.
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The most important consequence of the existence of such a solgtidn,), see
equation (50), withG, # 0 is actually the simultaneous existence of a whmbatinuous
manifold of the saddle-point solutions parametrized as

g7 () = g, (Td,) with TTAT = A. (53)

Indeed, from the invariance property of the kernel equation (1%, ) = IC(Td)a, Td,)
and from the (pseudo)unitarity of the matrices|Sdef’'| = 1 it follows thatg, (7 ®,) must
be a solution to equation (49) together with any given solugi@®,). However, if it had not
been for the conditio’, # O all these solutions would trivially coincidgy (®) = g(®) for
anyf defined as above, i.e. the symmetry of the solution would coincide with the symmetry
of the equation itself.

In the actual cas&, # 0, the presence of the combinatiijDa which isnot invariant
with respect to a transformatiod, — 7 ®, makes the symmetry of solution (50) lower
than the symmetry of equation (49). This is an example of the very well known effect of
spontaneous symmetry breakdown. The phenomenon makes the situation less trivial and
generates the whole manifold of the saddle-point solutions. Different nontrivial solutions are
actually parametrized by the supermatriGeshich are elements of the samet graded coset
spacellOSP(2,2/4)/UOSP(2/2) ® UOSP(2/2) which appeared in the previous section:
see the discussion after equation (23).

It is simple to satisfy oneself th#l(g,) = 0, and the same obviously holds for the whole
manifoldgr. Therefore, the only term that renders the expression for the generation function
to be non-trivial isS£1(g7). In the limit (¢, J, 1/N) — 0 we can expand equation (48) as

8L1(gr) =1In {1+2 s Z[dfb do; (&; — @) (1€l +J)(d; — d;)esr@*er(@; ”}

i<j
i PN i PO
~ §N3/2 f dd ®T(iel + J)pess® = 51\/3/2 Str[W (i€l + J)] (54)
where we introduced a supermatrix:
Wap = / do &, dfessr(® (55)

and used the fact that for our purposes it is enough to keep only terms linear with respect to
the source matrix (see the discussion after equation (27)).
To determine the matrix elements @f it is convenient to use the equation

Gr®! @, +iG1d]Ad, = /dq>b(©22\q>,,)(<1>,§i\q>u)e%&<¢b> (56)

which follows from the saddle-point equation (49) and equation (50). Now we make a
transformation:®, , — T ®,;, and easily find that

G 1T @, +iG10]AD, = fd@,, (O] Ady) (DA D, )essr (@

t The following comment is appropriate here. Actually, the conditish7 = A defines a graded group

UOSP (2, 2/2,2) whichis slightly different fromJ O S P (2, 2/4), since the latter requirecampactparametrization

in the ‘fermionic’ sector, whereas the former is ‘non-compact’ in both ‘bosonic’ and ‘fermionic’ sectors. However,

a detailed investigation of the structure of the saddle-point manifold and the necessity to perform an integration
over matricesy” forces one to choose these matrices to be ‘compactified’ in the ‘fermionic’ sector. This is a subtle
feature discussed in much detail in [35]. In principle, sucladhoccompactification can be avoided if one uses two
different matricesA andZ = diag1, 1,1, 1, -1, —1, 1, 1) when writing an integral representation for the generating
function, equation (16). Such a freedom of choice always exists because Grassmann integrals are always convergent.
Implementation of such a program can be found, e.g. in [26]. Practically, however, the results are the same as if one
‘compactified’ the matriceg when performing the actual calculations.
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8
Z q)a,acbl.ﬂAaaAﬂﬂKaaWﬂa (57)
a,f=1

whereK,, = —1 for & being a ‘fermionic’ index and unity otherwise. Comparing both sides

of this relation (i.e. the coefficients of the quadratic forms with respect to the components of
the supervectod,) yields a relation betweeW, the functionsG; ; and the matriceg':

W = G,T*ATA +iG.A (58)
where we used 7 = AT-1AT.

Using this fact we find that the averaged generating function is expressed as an integral
over the saddle-point manifold parametrized by the matfices

(27 (1, J2)) = /du (1)

A A A

xexp{l—Gg(r)Str(T‘lATA)+ — N2 Str Ji (GoT~ 1ATA+|G1A)} (59)

with du (T) being the invariant (Haar's) measure on the graded coset space. Here we
assumed an infinitesemal negative imaginary part to be included iRemembering that

Jp = Jﬂ?ﬂ + leéﬂ and making the correspondence

— v;t qvi
6 — X T ™ G0 g Y

(60)

we see that the expression obtained literally coincidest with the averaged generation function
derived in the previous section, that means with the generating function equation (24) after
restricting the integration to the saddle-point manifold equation (32) and expanding with respect
to source terms. Since that generating function underlied the expressions (37) for the two-
point spectral correlation function as well as expression (30) for the mean spectral density,
we immediately extract those quantities for our actual problem. As already mentioned above,
the mean resonance density is given &) = %Gz(r), and the functional form of the
spectral correlation function is given by the same Wigner—Dyson expression as before, see
equation (38), provided one useé-) for the actual mean resonance density.
Finally, it is necessary to mention that by using the same method it is straightforward to

demonstrate that all higher spectral correlation functions will also be given by GOE expressions.

4. Conclusion

In the present paper we introduced the full-connectivity model of a disordered reactance
LC network and found that its spectral properties in the thermodynamic Mmit> oo

could be efficiently investigated in the framework of a version of Efetov’'s supersymmetry
method [34—36] exploiting a generalized Hubbard—Stratonovich transformation introduced by
us earlier [22]. We also studied spectral properties of regular pencils of random matrices
with 1ID entries. In all cases we were able to derive the mean spectral density as well as
characterize the fluctuation properties of the spectra. The models studied turned out to be
faithful representatives of the Wigner—Dyson universality class.

t An extra factorv /2 appearing in the exponent equation (59) as compared with similar equations of the previous
paragraph is due to our rescaling— r/NY2 which also requires the spectral density to be redefined appropriately:
p(r) = N"2p().
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Actually, we hope that the present paper may provide a convenient background for the
regular investigation of fluctuations in the electric properties of disorde¢e(ore generally,
RL—C) networks, such as the conductaritg defined in equation (8), on-site potentidds
etc. Actually, it is possible to consider drC-model of a ‘banded’ type (i.e. of a large, but
finite range: see [39,40]) and derive [42] the correspondidimensional nonlinear-model
which should adequately describe the properties of the realistimetworks [5, 7], including
the effects of Anderson localization [41]. These issues will be addressed in forthcoming
publications [42].
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Appendix. A digression on functional Hubbard-Stratonovich transform, equation (44)

In this appendix we present a heuristic demonstration of the validity of relation (44) for some
kernelsKC. We are not pretending that we are able to specify under what precise conditions our
formal manipulations are true: this interesting issue deserves to be studied seriously and goes
much beyond our modest goals. Instead, our strategy will be a pragmatic one: to illuminate
the origin of the relations of that kind.

Actually, the fact thatb is a supervector rather than a usual vector is of little importance
for our consideration, so one may think about it as a usual vector (or even scalar). The way to
incorporate anticommuting variables in the consideration sketched below is described in the
appendix A of [39].

Let us then deal with a real symmetric integral kerk¢t,, ®,) = K£(D,, D,). Then,
generally, we expect a set of real eigenvalug$o exist and an orthogonal and normalizable
set of corresponding real-valued eigenfunctieysb):

fd% K(®g, @p)e, (Pp) = Aven(Py) /dq) en(®)ey(P) =3, (AL)
such that the kerné( allows the following representation:
K(@q, @) = Y Avey (Dg)en (D) (A2)

where the summation goes over alkuch that,, # 0. Then we can write a formal chain of
transformations:

1Y 1
I = exp{ — E Z K(q),‘, ij)} = Hexp{ — E Z)\—uev(q)i)ev(cbj)}
ij v

ij=1

Tleo] (S0

i=1
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= f/ (H dz, )exp[—}Zzz—iﬁ:<Zkl/2z e (c1>-)>]. (A4)
v vV 2r 2 v ’ i=1 v ! o l

Again, we do not specify the conditions when it is allowed to interchange the
summations, products and integrations but just assume ‘simple-mindedly’ that the sequence
of transformations presented above does not lead to divergent expressions.

Aform of expression (A4) suggests that one should consider it as a definition of a functional
integral going over the space of functions

dz,
§@) = 1%,e,@) D) =] \/Z_ﬂ (A5)

9 ool — B a1 ie(cb-) (A3)
o p 2 v Ry £ A

Finally, we introduce the kernél(®,, ®,) as
C(®q, Bp) = Y A e, (Da)e, (D) (A6)
w

which obviously satisfies
f AP C(Dy, PIK(P, Bp) = D €, (Pa)e, (Dp) = 85 (Dy, D) (A7)
7

where thes, (®,, ®;) plays the role of @-function in the space spanned by functig(®),
equation (A5):

/ D, g(Ba)5, (Da, By) = g(D).

Moreover, using equation (A5) it is straightforward to verify that

/ D, A, g(Gu)C(D,, D)g(Dy) = 22

which finally allows us to rewrite equations (A3), (A4) as

N
exp{ -1 Z K(®;, %)} = /D(g)

i,j=1

N
X eXp{ - % / dq)b dq)a g(cpu)c(q)a» q)b)g(q)b) —i Zg(q)l)} (A8)
i=1
which can be brought to the form of equation (44) by a trivial scaling transformation.
Let us finally note, that our actual kernel equation (41) is of a separable nature and,
moreover, has only afew nonzero eigenvalues. Evidently, inthat case the formal manipulations,
equation (A3), are expected to be most harmless.
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